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Computational Imaging at LANL

https://int.lanl.gov/orglddste/aldps/mst/mst8/imaging/index.shtml

Initiative for Scientific Imaging
(ISI)

Contact

Cristina Garcia-
Cardona

Marc Klasky

Youzuo Lin

Sven Vogel

Brendt Wohlberg

The Initiative for Scientific Imaging (1S is a focal point for the interdisciplinary community of
LANL scientists working on imaging problems. Our goals are to facilitate greater
communication among these scientists, as well as between experts in specific imaging
problems and mathematicians and engineers with relevant expertise, and to serve as an
umbrella organization to seek funding in this area.

Imaging at LANL IS1 Seminars

Radiography & Tomography 2021-03-25 13:00 (Anders Kaestner/PS)

Coherent Imagin
ks 2021-03-11 11:00 (Doga Giirsoy) ¥

Seismic Imaging

2021-02-25 11:00 (Soumendu Majee)

2021-02-11 11:00 (Singanallur
Venkatakrishnan)

2021-01-28 11:00 (Laura Smilowitz)

2020-12-17 11:00 (Sanna Sevanto) 2 d

2020-11-05 11:00 (Kevin Lamb) >

ISI Members Resources
Thilo Balke (computational imaging) Mailing Lists »
Cristina Garcia-Cardona (computational Software & Tutorials ™

imaging) s

Imaging Groups & Facilities
Luke Pfister (computational imaging) ™~

Conferences
Brendt Wohlberg (computational
imaging)

John Barber (coherent imaging)

SCICO: Scientific Computational Imaging Code

* Open-source software for computational imaging

* Developed by Luke Pfister (P1), Brendt Wohlberg (T5), and Cristina Garcia-
Cardona (CCS3)

* Powered by Python & JAX
* Transparent execution on CPU, GPU, and multiple GPUs
* Just-in-time compilation and powerful automatic differentiation

* Supports standard regularization (Tikhonov) and state of the art (Plug-
and-Play Deep Denoising Priors)

* Model based reconstruction + deep learning in a single package!
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Current Projects

« ASC Development of Coupled Radiographic & Hydrodynamic Code to
assess uncertainties

» Extremely limited view tomographic reconstruction algorithm
Development LDRD

 Application of de-Scattering & poly-energetic energy tomography for
determination to HE inspection Pathfinder

 DTRA Emergency response

 Application of coupled radiographic & hydrodynamic code to rad Flow
experiments

* Hydro-Program HART Tool Box development
 Global Security Project

* NA-22 Development of multi-modality& 3D Machine Learning
Algorithms



Coupled Hydrodynamic & Radiographic Reconstructions

Objectives

1. Reconstruct a series of highly accurate density
fields of a three-dimensional object from a time
series of radiographic projections to inform
hydrodynamic parameter estimation and/or model
selection.

2. Develop a quantitative method for assessing density
uncertainty and subsequent analyses.

3. Develop methods to address three-dimensionality.

4. Develop a technique to advance the density field in
time to allow for subsequent calculations.



* In this presentation a series of hydrodynamic simulations have been
performed to generate an ensemble of two-dimensional Richtmyer
Meshkoff instability simulations.

* The simulations utilize a Tantalum shell with an initial inward velocity
and a perturbation on the inner shell surface of the form:
— R=Ro+5+Sin(k 0)
—Where:

» Ro is the unperturbed inner radius
» A is the amplitude of the initial perturbation on the inner surface
» Kis the wave number of the perturbation




Hydrodynamic and Reconstruction Toolbox (HART)

Iterative
Reconstruction

Physics Models
Scatter Model
Detector Blur
Noise Model
Bucky Grid Model
Beam Physics

;
s |
:

v

Convolutional \

Neural Net

Optimizers
ADMM
ADAM
L-BFGS
etc.

Radiation
Transport Code

Convolutional
Neural Net
+
Hydrodynamic
Priors

Koopman
Operator

Hydrodynamic
Simulations

Limited
Reconstruction
Tools




EREBUS: Coupled Hydrodynamic/Radiographic Reconstruction
Algorithm for Physics Informed Density Reconstructions
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Scatter Approach

Step #1 Find Local Model argmin ,
ky = ——— I k*d, —s, I3 s.t.k
teU(t)
Step 2 Find ™
_ Kernel
® simula rofiles estimated F\/f’
® nearest neighbor :
g (b) local kernel Step 3
% Apply De-Scattering
@ Algorithm
1: function DESCATTER(E; {(dy, 5¢) }i—y)
2 initialize: d < t,
3 for fixed no. of iterations do
............. 4: find neighbors, U(d)
5 fit a local model, $4
6 8« 8q4(d)+d
direct g d<t—s o
8 dld<0]+0 > enforces nonnegativity of
9 end for
10: return d
m 11: end function
input direct



Treatment of the Scattered Radiation

via the Local Kernel Model

Scatter and Direct components Estimated Scatter/ True Scatter
of Transmission N — ,
Scatter/Direct Signal \ /
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High ]| | Flo\ / achieved excellent de-
| :
Scatter | || o | Object1 .| \_ ) scattering results.
Case £ NN /
'\ f\ \\ [em]
\\, — it ,/ ]
: Impact on density
e | reconstructions will
| | be addressed later in the
i 5. | ' .
Medium l". AN | Object 2 presentation.
Scatter R / ,:
Case
\_JII M _/ x(em] ’
o | /"‘\._, _/’*\\\\ | D —
I ||| Object3 m
Low il \

Scatter RN ‘
Case NS EEm N




Inversion techniques for density inversion using neural

network for radiographic inversion RADNET & Onion

« Convolution Neural Network (CNN) developed and tested using both
numerous conjugates and poly-energetic spectra with multiple

materials * Start with library of material densities and cross
sections, {&;(E), p;} . oem y
= = * Detect material interfaces from radiographic
Network Architecture: Hourglass structure petect mate

15
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= 2x2 Avg pooling = 2x2 Avg unpooling = 1x1 Conv 3x3 Conv, Bnorm, RelU = Skip + Concat

Note: We are currently utilizing our combined
CNN/de-scattering algorithm for a
multitude of scientific of scientific inquires.

PBX Density Experiment Pathfinder

Gold Horn




CNN results for direct-to-density mapping generally show
excellent reconstruction.

Histogram shows frequency of NRMSE Histogram for Test dataset

Red < 25 %
2.5 % <= Green <75 %

Blue >=75%
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percent density RMS errors for test
cases
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Red Case Excellent
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Percent Density Error Percent Density Error

DARHT: FTO 0 Plate Density Errors DARHT: FTO 0 Plate Density Errors
Empirical Model BIE Physics Based De-Scattering Kernel Method

11



Can we extract shock and edge locations from
Hydrodynamic Calculation & Radiographic Image

" . H = BI
RMI Simulation Edges from Synthetic Radiograph Green Sol:;;nay cause
degradation
In shock
location

Solution uses
reconstructed
density fields
to determine
interfaces

Blur+Noise Added Large Blur+ Noise Added

Transmission with Noise &Blur
Graded Collimation

Shock location may be determined reasonably well from transmission.

Edge location may be determined
reasonably well from transmission
l.e. must correct for parallax.

12



Theoretical Hydrodynamics: Properties of Degenerate

Solutions

Self-similar solution, normalized to a shock position:

Sedov Point Explosion Problem

- density profile:

- E: blast energy
- o hormalization
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Rs(1)

Et?
aA

1
5—w

Variation in density for
fixed shock locations is
totally dependent on range
of parameters examined.
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Et? . . .
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Demonstration of CGAN to Predict Density based on

Shock and Edge Features

CGAN Architecture developed based on
Pix2Pix, Phillip Isola Image-to-Image
Translation with Conditional Adversarial

Demonstration of density Inversion
using a single temporal snap shot

Networks
.. input at time index 31
CGAN Predictions
tind =4 tind=9 tind=4 tind=9
10.0 10.0
75 75
2 50 4 50 -
3 25 —— Real —— Real 8 25 —— Predicted —— Predicted
—— Predicted —— Predicted —— Real — Real -100 -0.75 -050 -025 000 0.25 0
0.0 0.0
tind =14 t ind =19 tind =14 tind =19
10.0 = = 100 = = 10 s 10
ground trut prediction
R 75 . 75 0 05 0 05
@ 50 G 50
3 25 — Real — Real 8 25 —— Predicted —— Predicted 200 0.0 200 0.0
= Predicted = Predicted = Real — Real
O 10 20 w0 5 10 20 0 T 10 =0 w0 5 10 20 0 400 05 400 05
x_loc x_loc x_loc x_loc 0 250 0 250
-1.0 -1.0

Density reconstructions using time-series

. . , _ 2 D RMI Simulations
of shock/edge to determine density 1 D Simulations



Coupled Hydrodynamic & Radiographic

Reconstructions

Objective: Learning the dynamic evolution of densities and learning a
network between (clean) direct signals or radiographs and corresponding
densities.

@ The training data can be denoted as:

[Di(t1), pi(t1), Di(t2), pi(t2), Di(t3), pi(ts), Di(tar), - . pi(ta1)]iy,
where D are the radiograph measurements, p is the clean densities,
denotes the number of time-series data sets and each time-series data

point has 41 time snapshots.

@ Learn a common model of the dynamics using CNNs as follows:

pf(tf+1) — G(p!(tj))7 J B 17 27 U 741

where G is a deep CNN whose parameters we can learn from the
above data set.



Coupled Hydrodynamic & Radiographic

Reconstructions

@ CNN for reconstructing density from radiograph measurement:

where F(.) maps from clean direct signals to clean densities.

@ For reconstruction time, we get T(t;j) from which we can obtain an
estimate D(t;) and then obtain the densities by optimizing:

o min S (llo(t) = FDE)IE + Alo(t) — 6o

+ID(t;) — D(t))|]%)

where the PDE model is replaced with a CNN-based regularizer.



Preliminary Dynamic Results

Input Image t0 Target Image tl  Predicted Image t1

0]0]0

Input Image t30 Target Image t35 Predicted Image t35

Olels

Simulations




Proximal Gradient Method for Parameter Estimation

Let g() = |lp — f()II5/2, where p is the density Juu

distribution associated with hydro dynamic parameters 1.

Lety” = argming{1)) R,
. _ P : IIIP—II"H%} Hydro
¥ = proxg () 2 argmin {g W) + =3 Simulations CGAN
=P = AV f(Y)
of@) _ Af P11 ps | F"”
~ JAf = — AP =1, — .
g* =arg mein d(Fg (pwl, Py, » 1/)1), Yy, —y) Hyctlro ptgram
. estimation
Yy =19 +Fg (Pzpl.ﬁlpz,llh) Fo- ()
(2

Reference: https://web.stanford.edu/~boyd/papers/pdf/prox_algs.pdf



Limited View Tomographic Reconstructions for DARHT

Radiography

IHyperIayer (HL) 1 P — - +» LG I
| I
{ Training Cost | -—_———- ==
I 2.5D ™ S L Patch Data || :
T EP Patch 5! Destreaki - N i e i = . 1 HLZ —>| HL3 I-’ .....
FDK™¥ peconstriiction [T | Extraction gs?rlﬁawl\“lwlmng h Asgregation Lansistency rl' _: L as
I [ - s — o —
mEP e . 5 I
| e %“=»! Adversarial CNN :
B e e et i b o S e
.. Extreme Limited View Micro-CT Reconstructions__
e FDK

M 3D convolution
320 convolution

= 12D conv. transpose
“ a r — » BN, RelU
#- BN, RelU, Squeeze
500x500%8 % 15 15 500x500 - Linear

Training Cost

min — AE [D(G(Pxep; 0c))] + E[||Pecr — G(Paep) 1]

Data Consistency

PWLS-EP PWLS-EP + GAN
min [|Az — y||3 + Bz — z¢|
r

Extensions to Hydrodynamics
Can we learn from a single 3D Simulation and,xeconstruct a 3D

DARHT Image ? \Walnut

2D Slice of 3D .
Rl e s Reconstructions
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